Statistical analysis of large scale surveys for constraining the Galaxy evolution

André M M Martins, Annie Robin Institut UTINAM, Université de Franche-Comté,

- Introduction
 - Thick disc
- The Besançon Galaxy Model
- SEGUE data
 - SEGUE plates
 - Simulations
 - Sample selection
 - Results from the SEGUE analysis
 - The metallicity distribution
 - Distances
 - MCMC-ABC analysis
- Conclusions
- Perspectives
- Preliminary analysis of the Gaia-ESO survey

- <u>Introduction</u>
 - Thick disc
- The Besançon Galaxy Model
- SEGUE data
 - SEGUE plates
 - Simulations
 - Sample selection
 - Results from the SEGUE analysis
 - The metallicity distribution
 - Distances
 - MCMC-ABC analysis
- Conclusions
- Perspectives

Milky Way thick disc

- Milky Way → We can study the chemical composition and the Galactic dynamics based on individual star measurements.
- The thick disc → Old component of the Galaxy
 - → Remnant of the early galaxy formation and evolution.
- The first stages of galaxy formation are printed in the chemical and kinematic properties of the thick disc.
- To understand the Milky Way formation and evolution it is crucial to understand thick disc formation.

- <u>Introduction</u>
 - Thick disc

- The Besançon Galaxy Model
- SEGUE data
 - SEGUE plates
 - Simulations
 - Sample selection
 - Results from the SEGUE analysis
 - The metallicity distribution
 - Distances
 - MCMC-ABC analysis
- Conclusions
- Perspectives

Besançon Galaxy Model

SFR: Thin disc – Constant Thick disc – One burst Halo - One burst

	Age (Gyr)	$\left[\frac{\text{Fe}}{\text{H}}\right]$ (dex)	d[Fe/H] dR
Disc	0-0.15	0.01 ± 0.12	
	0.15-1	0.03 ± 0.12	
	1–2	0.03 ± 0.10	
	2–3	0.01 ± 0.11	-0.07
	3–5	-0.07 ± 0.18	
	5–7	-0.14 ± 0.17	
	7–10	-0.37 ± 0.20	
Thick disc	11	-0.78 ± 0.30	0.00
Stellar halo	14	-1.78 ± 0.50	0.00

Robin et al. (2003)

Thick disc → Modified exponential (parabolic + exponential)

- A short scale length: ~ 2.3 kpc
- Scale height: ~ 530 pc
- Position of the change: $\xi \sim 660 \text{ pc}$ Robin et al. (2014)

Age metallicity relation: Haywood (2006)

Thin disc:

Implicit vertical metallicity gradient: ~ -0.06 dex kpc⁻¹

Age-scale height relation Age-metallicity relation

- <u>Introduction</u>
 - Thick disc
- The Besançon Galaxy Model
- SEGUE data
 - SEGUE plates
 - Simulations
 - Sample selection
 - Results from the SEGUE analysis
 - The metallicity distribution
 - **Distances**
 - MCMC-ABC analysis
 - Conclusions
 - Perspectives

Data

 Low latitude plates of the SEGUE survey.

(http://www.sdss3.org/)

Table 5.1: SEGUE survey plates used for the present analysis

Plate bright/faint	1 (°)	b (°)	Ra (°)	Dec (°)
2534/2542	50	14	277.60	21.33
2536/2544	70	14	286.66	39.11
2537/2545	110	10.5	334.17	69.39
2538/2546	110	16	323.07	73.64
2554/2564	94	14	302.97	60.01
2555/2565	94	8	312.39	56.59
2556/2566	94	-8	330.15	45.06
2668/2672	187	-12	79.49	16.61
2678/2696	187	8	98.13	26.67
2681/2699	178	-15	71.50	21.98

Spectroscopy (dr8)

 Bright (g = 15 - 18) and faint (g = 17.5 - 19.5) plates are treated separately.

Simulations

- Correct the magnitudes and color of stars with modified extinction model. Martins et al. (submited)
- We apply the same selection function to simulations (Selection of the stars that will receive fibers).
- S/N and spectral parameters errors are simulated.
- Errors are 0.23 dex, 180 k and 0.24 dex respectively for metallicity, effective temperature and log g (Smolinski et al. (2011))
- Compare to observations → selected stars in bins of g and g-r.

Sample selection

Main Sequence Turn-Off stars

 Follow the low latitude sample selection (Cheng, J. Y., Rockosi, C. M., Morrison, H. L., et al. 2012, ApJ, 746, 149)

Spatial coverage

• We cover regions: $6.0 \text{ kpc} < R_{gal} < 14.0 \text{ kpc}$

0.15 kpc < |Z| < 1.5 kpc

- Introduction
 - Thick disc
- The Besançon Galaxy Model
- SEGUE data
 - SEGUE plates
 - Simulations
 - Sample selection
 - Results from the SEGUE analysis
 - The metallicity distribution
 - Distances
 - MCMC-ABC analysis
- Conclusions
- Perspectives

Observations vs simulations

Observations vs simulations

Distances

- Main Sequence Turn-Off stars \succ from the model we fit a relation between temperature $T_{\rm eff}$ and absolute magnitude ($M_{\rm V}$).
- The relation is established independently in three metallicity bins.

-0.5 dex < [Fe/H] < 0.0 dex →

Distances

- Compute the absolute magnitude for the obs/sim
 - Compute the distance modulus.
 - Extinction is taken in account.
- The same bias
- A clear biasd > 4.0 kpc

Ivezić c, Ž., Sesar, B., Jurić c, M., et al. 2008, ApJ, 684, 287

Fitting method

We use the log-likelihood (Bienaymé et al. 1987).

$$L_r = \sum_{i=1}^{N} q_i (1 - R_i + \ln(R_i))$$

- The data and simulations are binned in the distance metallicity space.
- The log-likelihood is a statistical distance (pseudolikelihood) so we have to use an ABC/MCMC (Approximate Bayesian Computation) method, where the sampling is done by a Metropolis-Hasting algorithm.

MCMC/ABC Fitting method

```
For iter=1 to maxiter do
     Repeat
     Generate \theta' from the prior distribution \pi(\bullet)
     Generate z from the likelihood f(\cdot|\theta')
     until ρ ≤ ε
     set \theta_i = \theta
end for
 Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. 2011
```

```
ρ → pseudolikelihood (Distance)
\epsilon \rightarrow tolerance
z → simulated distribution
            Bin size
```

Results

- We fit for the thin and thick disc:
 - Local [Fe/H]
 - Radial metallicity gradients
 - Dispersion
- We fit:
 - i. Thick disc.
 - ii. Thick disc along with the thin disc
 - iii. Thick disc along with the old thin disc.
 - We have analyzed three cases for point ii.
 - Case 1: We use all fields.
 - Case 2: We don't use the anticenter fields.
 - ♦ I = 187°; I = 178°;
 - Case 3: We don't use the inner fields.
 - ♦ I = 50°; I = 70°;

Results - Thick disc along with the old thin disc

- Considering 10 independent runs:
 - The results are the mean.
 - The σ is the standard deviation.

case	$[Fe/H]_{SN_{Thick}}$ (dex)	$\frac{\frac{d[Fe/H]}{dR}}{(\text{dex kpc}^{-1})}$	Disp (dex)	$[Fe/H]_{SN_{Old\ Thin}}$ (dex)	$\frac{\frac{d[Fe/H]}{dR}}{(\text{dex kpc}^{-1})}$	Disp (dex)	L	BIC
1	-0.465	-0.008	0.319	-0.116	-0.079	0.135	-511.05	
	± 0.033	±0.015	±0.029	±0.012	±0.015	±0.011	±16.63	1084.66
2	-0.449	0.031	0.319	-0.116	-0.086	0.135	-269.10	
	± 0.028	± 0.025	±0.032	±0.021	± 0.040	±0.011	±9.08	587.18
3	-0.418	-0.030	0.304	-0.113	-0.076	0.135	-440.37	
	±0.024	±0.050	±0.038	±0.017	±0.017	±0.011	±16.10	931.85

All fields

No anticenter fields

No inner fields

Case 1

Correlations

Thin disc metallicity distribution from the literature

Thick disc metallicity distribution from the literature

The age of the thick disc

Case 1 → All fields

Table 8.11:

Sum of the likelihood values, for different ages of the thick disc, for the spectroscopic parameters (MSTO stars) with the fitted parameters.

Age	[Fe/H]	σ	$T_{ m eff}$	σ	$\log g$	σ
8 Gyr	-734.31	23.34	-1133.74	49.38	-424.284	17.06
9 Gyr	-693.68	10.78	-1032.26	10.84	-400.93	5.780
10 Gyr	-695.19	15.90	-990.16	39.27	-449.12	14.49
11 Gyr	-695.84	10.09	-969.23	10.22	-388.55	6.63
12 Gyr	-605.94	11.72	-790.60	13.46	-361.15	9.108
13 Gyr	-706.82	13.56	-1025.64	31.84	-448.57	13.79

Results

- If thick disc has a single epoch formation
 - → 12 Gyr is the best age for this population.
 - \rightarrow The isochrone from Bergbush and vandenberg (1992) that best fits these data is the one with Fe/H=-0.5 and age of 12 Gyr.
- We tried to fit two radial metallicity gradients in the thick disc adding a parameter R_{change} → Results are compatible with no slope in the thick disc.

- Introduction
 - Thick disc
- The Besançon Galaxy Model
- SEGUE data
 - SEGUE plates
 - Simulations
 - Sample selection
 - Results from the SEGUE analysis
 - The metallicity distribution
 - Distances
 - MCMC-ABC analysis
- Conclusions
- Perspectives

Discussion – Thick disc formation scenarios

- The confirmation of a null radial metallicity gradient in the thick disc
 - → Radial mixing in gas or stars is important

Gas mixing

High SFI → strong turbulent gaseous disc Brook et al. (2004), Lehnert et al (2009), Bournaud et al. (2009), Haywood et al. (2013)

Thick disc was formed in a highly mixed gas producing a chemically homogeneous thick disc

Star + Gas mixing

- Radial migration (Sellwood & Binney (2002), Schönrich & Binney (2009a), Schönrich & Binney (2009b)) can also flatten gradients
- The radial mixing in a disc can be also a consequence of the minor mergers Kazantzidis et al. (2008), Quillen et al. (2009), Bird et al. (2012).
 - Radial mixing becomes stronger at large |z|. Explains a flat gradient in the thick disc, not found in the thin disc.
- Direct accretion of stars (Statler (1988), Toth & Ostriker (1992), Quinn et al. (1993), Velazquez & White (1999) and Abadi et al. (2003)).
 - Results cannot rule out this scenario

Conclusions

- The thin disc local metallicity and radial metallicity gradient are in agreement with literature
- The thick disc local metallicity is found to be around -0.5 dex in SEGUE
 - There is no radial metallicity gradient in the thick disc
 - This result indicates the existence of radial mixing in gas or stars
 - An inversion of the thick disc radial metallicity gradient seems less probable
- * The method allowed the study of correlations

- Introduction
 - Thick disc
- The Besançon Galaxy Model
- SEGUE data
 - SEGUE plates
 - Simulations
 - Sample selection
 - Results from the SEGUE analysis
 - The metallicity distribution
 - Distances
 - MCMC-ABC analysis
- Conclusions
- <u>Perspectives</u>

Perspectives

- The GES analysis (DR2) will be performed on future releases with larger samples and improved calibrations.
 - Use the [Fe/H] vs [α/Fe] sequence
- Apply the analysis tools and techniques, developed with SEGUE and Gaia ESO survey, to APOGEE.
- Combine the results from different surveys.

It will help to constrain better:

- Vertical metallicity gradients.
- SFH of the thick disc.
- Explore chemical evolution in thick disc phase

Robin, A. C., Reylé, C., Fliri, J., et al. 2014, Czeka M., Robert C. P., and Martins A. M. M., A&A, 569, A13

Increase the precision of our results.

Perspectives

- Use of kinematical data combined with metallicity distributions to understand the thick disc formation.
 - Study the rotational velocity as a function of metallicity
 - $\sigma_{u,v,w}$ as a function of metallicity
 - Study the eccentricity as a function of metallicity

Thanks

1-5 **December 2014**

Aula Magna, University of Barcelona Barcelona, Spain

http://gaia.ub.edu/greatconf14

Science Organising Committee

Nicholas Walton - Institute of Astronomy, Cambridge, UK (Chair SOC) Francesca Figueras - Barcelona University, Spain (Chair LOC) Coryn Bailer-Jones - Max Planak Institute for Astronomy, Heidelberg, German Anthony Brown - Universiteit Leiden, The Netherlands Givella Commentin - IMAF, Oscarotato Astronomic all Boloona, Italy

Sergi Blanco Cuaresma - Université de Bordeaux - CNRS - LAB, France (ESR rep)

Laurent Eyer - Université de Genève, Switzerland

Eva Grebel - University of Heidelberg, Germany
Xiaowei Liu - Peking University, Kavli Institute for Astronomy

Xiaowei Liu - Peking University, Kavli Institute for Astronomy and Astrophysics, Beijing, Chin Tadeusz Michalowski - Adam Mickiewicz University, Poznan, Poland Will O'Mullano - ESA - ESAC Maddid Spain

Will O'Mullane - ESA, ESAC, Madrid, Spain Timo Prusti - ESA, ESTEC, Noordwijk, The Netherlands Joris De Ridder - KU Leuven, Relaium

Annie Robin - Observatoire de Besançon, Institut Utinam, France Alejandra Sans - KU Leuven, Belgium (ESIR ven Nuno Santos - Centro de Astrofísica, Univ. Porto, Portugal Martin Smith - Changhai Astronomical Observatory, Shanghai Ch

Martin Smith - Shanghai Astronomical Observatory, Shanghai, China Caroline Soubiran - Université de Bordeaux - CNRS - LAB, France Antonella Vallenari - INAF, Osservatorio Astronomico di Padova, Italy

