THE HISTORY OF THE SUN’S BIRTH CLUSTER

Carmen Adriana Martínez Barbosa
Anthony Brown
Simon Portegies Zwart
DID THE SUN BORN IN AN OPEN CLUSTER?

Disk stars are born in stellar clusters (Lada et al. 1993)

- Radio nuclei (7Be, 26Al, 26Cl, 53Mn)
- Coplanarity of solar system planets
- Orbits of Kuiper belt objects

Supernova explosion in the vicinity of the newborn Sun

Close encounter with another star
WHY IS IMPORTANT TO STUDY THE ALREADY EXTINCT SUN’S BIRTH CLUSTER?

• To understand the open cluster evolution in the Milky Way.

• How the radial migration of open clusters affects the metallicity gradient in the Galaxy.

• To predict the current phase-space distribution of solar siblings
 * Better constraints on the initial conditions of the Sun’s birth cluster
 Better understanding of the current features of the Solar system

In all the cases we need realistic simulations
WHY IS IMPORTANT TO STUDY THE ALREADY EXTINCT SUN’S BIRTH CLUSTER?

• To understand the open cluster evolution in the Milky Way.

• How the radial migration of open clusters affects the metallicity gradient in the Galaxy.

• To predict the current phase-space distribution of solar siblings
 * Better constraints on the initial conditions of the Sun’s birth cluster

Better understanding of the current features of the Solar system

In all the cases we need realistic simulations
A high order integrator: *Rotating Bridge* (Martínez-Barbosa et al. (2015) MNRAS, 446, 823; Gonçalves et al. in prep.)

\[\begin{align*}
&\frac{d}{dt} \begin{pmatrix} x_i \\ v_i \end{pmatrix} \\
= &\begin{pmatrix} 0 \\ -\frac{GM_c}{R_c^2} \end{pmatrix} \\
\end{align*} \]
INITIAL MASS AND RADIUS OF THE SUN’S BIRTH CLUSTER

INITIAL PHASE-SPACE COORDINATES OF THE SUN’S BIRTH CLUSTER

Methodology:

1. We selected 5000 galactocentric positions and velocities from a 4D gaussian centered at the current Sun’s phase-space coordinates.

2. We computed the orbit of the Sun backwards in time.

3. We obtain a set of birth phase-space coordinates.
The Sun does not migrate on average. No migration outwards. Only very specific Galactic configurations allow considerable radial migration.

\[x_i = 9 \text{ kpc} \]

(Martínez-Barbosa et al. (2015) MNRAS, 446, 823)
THE EVOLUTION OF THE SUN’S BIRTH
CLUSTER IN THE GALAXY

\[M_c = 1023 M_\odot; \quad R_c = 2 \text{ pc}; \quad N = 1700 \]
THE EVOLUTION OF THE SUN’S BIRTH CLUSTER IN THE GALAXY

\[M_c = 1023 \, M_\odot; \, R_c = 2 \, \text{pc}; \, N = 1700 \]

miércoles, 3 de diciembre de 14
ASTROMETRIC PROPERTIES OF SOLAR SIBLINGS

Mc = 510 M☉
Rc = 0.5 pc
N = 875

Martínez-Barbosa et al. in prep
$M_c = 510 M_{\odot}$

$R_c = 0.5$ pc

$N = 875$
NUMBER OF SOLAR SIBLINGS GAIA WOULD OBSERVE

- No transient structure
- No Gaia errors
CONCLUSIONS

Gaia will revolutionize our understanding of the Milky Way however...

It will be very difficult to search for solar siblings!

Next challenge: develop techniques to look for solar siblings among the vast Gaia catalogue.
THANK YOU