

On the connection between the thick disk and the galactic bar

Alessandro Spagna¹, Anna Curir¹, Ronald Drimmel¹, Mario G. Lattanzi¹, Paola Re Fiorentin¹, A. L. Serra²

(1) INAF-Osservatorio Astrofisico di Torino (Italy)

(2) Università di Milano (Italy)

ABSTRACT

Although the thick disk in our Galaxy was revealed more than thirty years ago, the formation scenario is still unclear.

Recently, several studies of in-situ thick disk stars have evidenced a positive kinematic-metallicity correlation, dVphi/d[Fe/H] = 40-50 km/s/dex. Such a finding appears consistent with a mild positive radial metallicity gradient, d[Fe/H]/dR, for thick disk stars, which, differently from thin disk stars, show lower chemical abundances towards the inner disk.

Here, we discuss these results with respect to the expected evolution of a primordial disk population, as deduced through high resolution N-body simulations of a Milky Way-like disk galaxy. In particular, we analyse how the presence of a central bar may affect the disk evolution from the spatial and chemo-kinematical point of view.

Fig. 1 - Barred galaxy: density distribution of the disk particles after a dynamical evolution of T= 6 Gyr

Bar vs. disk velocity distribution

Our simulations show that the bar produce a *thickening* in the inner-disk and a *flaring* in the outer disk (*Spagna* et al 2015, in preparation).

These results are not completely consistent with studies published by other authors (e.g. *Minchev* et al. 2012, A&A, 548, A127).

Fig. 2 - Unbarred disk: time evolution of the vertical velocity dispersion, σ_{Vz} The disk particles show no significant changes

Fig. 3 - Barred disk: time evolution of the vertical velocity dispersion, σ_{Vz} A disk "heating" greater than about 50% is observed for particles up to |z| = 2 kpc

N-body simulations

Two cases of a Milky Way-like galaxies (*Curir* et al. 2012, A&A, 545, A133):

- **a. BARRED DISK GALAXY**, produced by instability of a stellar disk (Tab. 2) within a DM halo (Tab. 1)
- **b.** UNBARRED DISK GALAXY, including an additional massive central bulge (Tab. 3)

Table 1. Halos properties (Navarro, Frenk and White profile)

DM	M_{vir}	R_{vir}	C_{vir}	R_{max}	N	ϵ	M_{DM}
Halo	10^{12}	258	7.40	336	10^{7}	0.11	1.07×10^5

Notes. M_{vir} : Halo's virial mass in M_{\odot} ; R_{vir} : virial radius in kpc. C_{vir} : NFW concentration parameter. R_{max} : maximum radius. N: total number of Halo particles. ϵ : softening length in kpc. M_{DM} : mass of DM particle in M_{\odot} .

Table 2. Properties of the disk

Stars	M_{st}	M_{star}	h_d	Z_d	N	ϵ	Q
Disk	$5.6 \cdot 10^{10}$	$7.47 \cdot 10^3$	3.5	0.7	$7.5 \cdot 10^6$	0.044	2

Notes. M_* : disk mass in M_{\odot} . M_{star} : mass of the disk particle in M_{\odot} . h_d : disk scale length in kpc. z_d : initial disk thickness. N: number of particles. ϵ : softening length in kpc. Q: Toomre parameter.

Table 3. Properties of the bulge (Hernquist profile)

Stars	M_{st}	N	ϵ	а	M_b
Bulge	$1.85 \cdot 10^{10}$	$2.5 \cdot 10^6$	0.044	1.12	$7.39 \cdot 10^3$

Notes. M_* :mass in M_{\odot} . N: number of particles. ϵ : softening length in kpc. a: Hernquist scale radius in kpc. M_b : mass of the particle in

Bar vs. disk vertical distribution

Consistently with σ_{Vz} (Figs. 2-3), the *unbarred* disk show no significant changes, while the barred disk show a relevant *thickening* and a mild *flaring*.

Fig. 4 – Disk vertical distribution vs. R. Here, the parameter, \mathbf{z}_{50} , indicates the height $|\mathbf{z}|$ above the plane that includes 50% of the total surface mass density, Σ .

Bar vs. chemical distribution

As shown by *Curir* et al. (2014, ApJ, 784, L24), the secular disk evolution does *not* seem to modify significantly the disk chemical profiles in *both* the barred/unbarred disks examined.

Then, although the radial chemical gradient of the thick disk represents a fossil signature of the original distribution, the *correlation* between the chemical abundances *and* kinematics needs to be considered to disentangle the formation processes of the early disk

Fig. 5 – Correlation V\phi – [Fe/H]. *Left panel:* simulations from *Curir* et al. (2012). Right panel: observations of thick disk stars by *Spagna* et al. (2010, A&A, 510, L4)