The IMF at intermediate masses from galactic Cepheids

R. Mor1 A.C. Robin2 F. Figueras1 B. Lemasle3
1 Departament d’Astronomia i Meteorologia and IEEC-UB, Institut de Ciències del Cosmos de la Universitat de Barcelona, Martí Franquès, 1, E-08028 Barcelona.
2 Institut UTINAM, GSI THETA, Université de Franche-Comté, Besançon, France
3 Anton Pannekoek Institute for Astronomy (Netherlands)

Abstract

Aims. To constrain the Initial Mass Function (IMF) of the Galactic young (< 1 Gyr) thin Disc population using Cepheids.

Methods. We have optimized the flexibility of the new Besançon Galaxy Model (Czekaj et al., 2014) to simulate magnitude and distance complete samples of young intermediate mass stars assuming different IMFs and Star Formation Histories (SFH). Comparing the simulated synthetic catalogues with the observational data we studied which IMF reproduces better the observational number of Cepheids in the Galactic thin Disc. We analysed three different IMF: (1) Salpeter, (2) Kroupa-Haywood and (3) Haywood-Robin IMFs with a decreasing SFH from Aumer and Binney, 2009.

Results. For the first time the Besançon Galaxy Model is used to characterize the galactic Cepheids. We found that for most of the cases the Salpeter IMF overestimates the number of observed Cepheids and Haywood-Robin IMF underestimates it. The Kroupa-Haywood IMF, with a slope \(\alpha = 3.2\), is the one that best reproduces the observed Cepheids. From the comparison of the predicted and observed number of Cepheids up to \(V = 12\), we point that the model might underestimate the scale height of the young population.

Conclusions. In agreement with Kroupa and Weidner (2003) our study shows that the Salpeter IMF (\(\alpha = 2.35\)) overestimates the star counts in the range \(4 \leq M/M_\odot \leq 10\) and supports the idea that the slope of the intermediate and massive stars IMF is steeper than the Salpeter IMF.

Global Strategy

We tested three different IMFs, comparing a synthetic magnitude limited sample of Cepheids with an observational magnitude limited sample.

Salpeter IMF overestimates the number of stars in the intermediate-mass range

\[\frac{dN}{dm} \propto \left(\frac{m}{M_\odot}\right)^{-2}\]

Haywood-Robin IMF (Haywood et al. 1997 and Robin et al. 2003) underestimates the total number of Galactic Cepheids. Salpeter IMF (Salpeter 1955) overestimates it and Kroupa-Haywood IMF produces of the order of the total counts of observed Cepheids.

The figure shows Cepheids counts comparison between simulations and observations.

The IMF in range \(4 M_\odot \leq M \leq 10 M_\odot\) points towards Kroupa-Haywood IMF (\(\alpha = 3.2\))

- \(V_{\text{max}}\) is the mean apparent magnitude of a Cepheid along its period.
- \(V_{\text{max}}\) is the apparent magnitude at maximum Brightness.
- \(V_{\text{min}}\) is the apparent magnitude at minimum Brightness.

In the figure we can see a comparison between the simulations and the observations for the total number of Cepheids up to magnitude \(V \leq 12\). We used 3 different IMFs and two different boundaries of the Instability Strip.

- IS-Extended; the Extended Instability strip uses a boundaries from Fiorentino (private communication).

The slope of the best IMF is in the upper limit

Including our results in the alpha-plot for Kroupa, 2002, we can see how inside the mass range from \(4 M_\odot\) to \(10 M_\odot\), our result falls in the upper limit region. The slope of the Kroupa-Haywood Initial Mass function is \(\alpha = 3.2\).

The scale height of the young thin disc might be underestimated

It can be noticed that the latitude distribution is higher for the observations than for the simulations. This phenomenon could be caused by an underestimation of the scale height for the galactic young thin disc (< 1 Gyr).

The slope of the best IMF is shown as a red horizontal line within the yellow region, and the limits of the studied mass range (from \(4 M_\odot\) to \(10 M_\odot\)) is marked with black vertical lines.

Number of Cepheids as a function of galactic latitude.

Work is in progress to determine the impact of the binary treatment and probability on the result. We shall also considering revised evolutionary tracks and different star formation history as well as different extinction model.