Gaia: Switching ON the Transient Discovery Machine

The Milky Way Unravelled by Gaia - 5th December 2014

Nadejda Blagorodnova
PhD Student in the Institute of Astronomy
I have X^1, why should I care about Gaia?

$^1 X = \text{your favourite transient survey}$

Strengths:
- Rates
- Nuclear transients

Image courtesy of B. Holl

Image courtesy of Gaia

Image courtesy of S. Koposov

(Gets better later...)

3300-6800 A
40 to 320 A pixel-1

6400-10500 A
70 to 150 A pixel-1

PSF~0.05”
I have Gaia, why should I care about Y?

1. \(Y = \) your favourite follow-up resources

Gaia: intelligent discovery
Follow-up: confirmation + characterisation
Gaia detection efficiency - transients

- Realistic mock galaxy catalogue (Baldry+2004). LF for blue + red galaxies.
- Sizes (Shen+2003).
- SN light curves (Li+2011)
- Simulation OnBoard detection and magnitude (GIBIS)
- Detection efficiency for different limiting magnitudes

GIBIS
Gaia Instrument and Basic Image Simulator
Galaxy-Transient detection

1 vs. 2 detected sources

Limiting magnitude G = 19

Detection efficiency vs. distance

Blagorodnova et al. (in prep)
Expected number of SNe. Limiting Magnitude=19

Altavilla et. al. 2012

Blagorodnova et. al. (in prep)

Belokurov, Evans 2003

Fig. 4

Fraction of the sky vs the expected end of mission number of transits. About 15.4% of the sky is expected to be observed 30-60 times, ∼56.6% of the sky is expected to be observed 60-90 times and ∼20.1% is expected to be observed 90-120 times. The remaining 7.9% is expected to be observed 120-240 times.

J. de Bruijne, private communication.

There are two types of inputs for this simulation: the transient properties (photometric evolution and rate of occurrence) and the survey strategy (survey area, limiting magnitude and monitoring cadence).

We considered “classical” SN classes: Ia, IIP, IIL, IIn and Ib/c. For each of these SN types we need to know: a) the template light and color curves along with absolute magnitude at maximum and dispersion (Li et al. 2011); b) the K-correction as a function of redshift from the template to the survey observing band (cf. Botticella et al. 2008); c) the current best estimate of the SN rate evolution with redshift (Botticella et al. 2008 and references therein).
Gaia Transient Classification

SN Ia templates from Hsiao et. al 2007
GSTEC-Gaia Spectrophotometry
Transient Event Classifier

\[P(M \mid D, m_G, v) = \frac{P(D, m_G, v \mid M) P(M)}{\int P(D, m_G, v \mid M) P(M) dM} \]

Blagorodnova et. al. 2014
After the mission started...
First Gaia SN candidate

Re=3"
r=16.45
First Gaia SN!

Identification of the first Gaia SN as SN Ia at $z=0.03$!

Best fit model:
SN Ia, 2 ± 8 days, $z=0.03 \pm 0.01$

Confirmed from ground!
Summary

- Gaia and ground-based surveys are complementary
 - Gaia: intelligent discovery and astrometrical characterisation
 - Follow-up: photometric and spectral evolution

- Future
 - Understand the detection efficiency with mission data -> rates!
 - Follow-up and characterisation of nuclear transients -> new!

- The transient discovery machine has been switched **ON**…
Thank you!

DPAC
Vasily Belokurov
Heather Campbell
Morgan Fraser
Gerry Gilmore
Diana Harrison
Simon Hodgkin
Mike Irwin
Sergey Koposov
Rubina Kotak
Seppo Mattila
Guy Rixon
Sjoert Van Velzen
Lukasz Wyrzykowski
Nicholas A. Walton