Hypervelocity stars in the Gaia era

Elena M. Rossi
Leiden Observatory, the Netherlands
Hypervelocity stars

- 2005 discovery in SDSS catalogue (Brow et al.)

- dedicated spectroscopic survey, targeting B stars in outer Halo with MMT telescope

- found around around 20 unbound HVSs

- trajectory and energy points towards an origin close to SgA*

Galactic Rest frame velocity versus Galacto-centric distance

E.M. Rossi, Gaia meeting
Modelling HVS ejection

1. *star* binary tidally disrupted 2. *black hole* binary scatters stars

Hills 1988

Yu & Tremaine 2003

Thursday, December 4, 2014
One explanation for 2 mysteries

1. *star* binary tidally disrupted

 \[S\text{-}stars \text{~cluster<} 0.04 \text{~pc from } SgrA^* \]

Hills 1988

Thursday, December 4, 2014
Star trajectories: *new* method

- simplify equations of motion exploiting large discrepancy in mass
- very precise, fast and allow large parameter space investigation
- different from direct 3-body (e.g. Kenyon, Bromley)

Sari et al 2010

Sari, Kobayashi & EMR 10, Kobayashi et al 12, EMR et al. 14

E.M. Rossi, Gaia meeting
Ejection velocity

geometry of encounter

Ejection velocity

\[v = K \sqrt{2Gm_c/a_b} \left(\frac{M}{m_t} \right)^{1/6} \]

binary separation

Analytical description of the ejection velocity

Sari et al 2010
Velocity distribution

below peak: galactic deceleration

around peak: separation distribution

above peak: no influence of GP

dependence on mass distribution

N_v depends on binary properties at GC (mass and separation “a”) and on Galactic potential

E.M. Rossi, Gaia meeting
what can we learn?

- Binary population in the galactic centre do not have flat distribution in logP. There are more wider binaries: e.g. $f_\alpha \propto \alpha^3$

Rossi et al. 2014
Importance of HVS study

but we need more and better data (and modelling) to

• Distinguish formation models, informing stellar dynamical models around SMBHs

• Determine stellar binary properties at Galactic Centre: mass and separation distribution

• Study the shape and depth of Galactic Potential and its components (bulge, disc, halo)
need more data: Gaia!

- **Great Opportunity**: select HVSs not spectroscopically but astrometrically exploiting their peculiar radial trajectory ==> larger (~a few 100) and less biased sample

- **Challenge**: sieve through 10^9 star catalogue to find ~a few 100 HVSs
The HVS project in Leiden

Running simulations, using Gaia mock catalogue to:
• determine best part of sky to discover HVS w Gaia
• determine # HVS with given mass and precision
• identify contaminants
Running simulations, using Gaia mock catalogue to:
• determine best part of sky to discover HVS w Gaia
• determine # HVS with given mass and precision
• identify contaminants

automatic routine to find HVS candidates in the actual Gaia catalogue
The HVS project in Leiden

Running simulations, using Gaia mock catalogue to:
• determine best part of sky to discover HVS w Gaia
• determine # HVS with given mass and precision
• identify contaminants

automatic routine to find HVS candidates in the actual Gaia catalogue

model data to extract physical information on the Galaxy
The HVS project in Leiden

Running simulations, using Gaia mock catalogue to:
- determine best part of sky to discover HVS w Gaia
- determine # HVS with given mass and precision
- identify contaminants

automatic routine to find HVS candidates in the actual Gaia catalogue

model data to extract physical information on the Galaxy

E.M. Rossi, Gaia meeting
Thursday, December 4, 2014
Known HVSs: too far for Gaia

proper motion expected < 0.5 mas/yr, smaller or equal to Gaia detection errors

work by Master Student Joshua Albert

Thursday, December 4, 2014
High accuracy below 30 kpc

& Radial velocity below 16 kpc

Relative errors for a B5V star with $v = v_{\text{esc}}$, A. Brown’s pyGaia package

Thursday, December 4, 2014
Conclusions

• An unprecedented large sample of HVSs can be built with Gaia

• This requires an efficient way to extract HVSs candidates from catalogue

• A large sample may allow for unprecedented measurements of Galactic properties, like the shape and depth of the Galactic potential at different scales