Gaia Variability Analysis and Processing

Laurent Eyer on behalf of Coordination Unit 7

Barcelona, Catalonia, Spain

Tuesday December 2, 2014
CU7/DPCCGeneva: variability processing and analysis
CU7/DPCGeneva: variability processing and analysis

- Active members: 72 people
ESA + large collaboration
ESA + large collaboration = MANY documents
ESA + large collaboration = MANY documents

CU7/DPCG level
ESA + large collaboration = MANY documents

CU7/DPCG level
ESA + large collaboration = MANY documents

CU7/DPCG level
ESA + large collaboration = MANY documents

CU7/DPCG level

266 documents
ESA + large collaboration = MANY documents

CU7/DPCG level

> 10,000 pages?

266 documents
Gaia can be seen under many facets
Gaia can be seen under many facets
at the heart of Gaia:
a multi-epoch survey
Gaia can be seen under many facets at the heart of Gaia: a multi-epoch survey. Gaia “case” is about variability.
Gaia can be seen under many facets

at the heart of Gaia:

a multi-epoch survey

Gaia “case” is about variability

Gaia is performing Time-Domain Astronomy
Estimation of G magnitude error as function of magnitude (stay-light included)

G magnitude error

G magnitude

Courtesy of Dafydd Evans
Gaia will detect most variable types on this tree
Gaia will detect most variable types on this tree
Gaia will detect most variable types on this tree
Gaia will detect most variable types on this tree
Variability tree

Asteroids

Stars

Extrinsic

Rotation

Eclipse

Eclipsing binary

Planetary transits

Microlensing

Eclipse occultation

Rotation periods

Determine rotation periods

Stars

Intrinsic

Eclipse

Eruptive

Cataclysmic

AGN

Probe real-time stellar evolution

Find targets & give constraints for asteroseismology

Calibrate Standard Candles

Gaia will detect most variable types on this tree

Credit: L. Eyer & N. Mowlavi (03/2009)
Variability tree

Variability Tree

Asteroids
- Rotation
- Eclipse
- Microlensing
- Asteroid occultation
- Eclipsing binary
- Planetary transits

Stars
- Extrinsic
- Eclipse
- Rotation
- Eclipses
- Eruptive
- Cataclysmic

Intrinsic
- SN
- Supernovae
- Symbiotic
- Dwarf novae
- Long period sdB
- V1093 Her
- W Vir
- Type II Ceph.
- δ Cepheids
- RR Lyrae

Extrinsic
- RCB
- BY Dra
- UV Ceti
- FKCOM
- Single red giants
- ECL
- ELL
- Red dwarf (K-M stars)

Intrinsic
- δ Scuti
- γ Doradus
- Slowly pulsating B stars
- α Cygni
- β Cephei
- λ Eri
- SX Phoenicis
- ACV
- BY Dra
- Single red giants

AGN
- Probe real-time stellar evolution
- Find targets & give constraints for asteroseismology
- Calibrate Standard Candles

- Determine stellar parameters
- May find very short time scale variables
- Determine rotation periods

Gaia will detect most variable types on this tree

Credit: L. Eyer & N. Mowlavi (03/2009)
Variability tree

- Gaia will detect 50 million - 150 million variable objects
- Determine rotation periods
- May find very short time scale variables
- Probes real-time stellar evolution
- Determine rotation periods
- Find targets & give constraints for asteroseismology
- Calibrate Standard Candles
- Gaia will detect most variable types on this tree

Credit: L. Eyer & N. Mowlavi (03/2009)
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):

- General Variability Detection (GVD)
- Special Variability Detection (SVD)
- Calibrated photometry (CU5)
- Radial velocities (CU6)
- Variables catalogue (CU7)
- Global Variability Studies (GVS)
- Specific Object Studies (SOS)

- Astrometric char (CU3+CU4)
- Spectroscopic char (CU6)
- Astrophysical param (CU8)

- Unexpected Features Analyses
- Supplementary Observations
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):

- **General Variability Detection (GVD)**
- **Specific Object Studies (SOS)**
- **Characterization**
- **Classification**
- **Special Variability Detection (SVD)**
- **Variables catalogue (CU7)**
- **Calibrated photometry (CU5)**
- **Radial velocities (CU6)**

Unexpected Features Analyses

Supplementary Observations

- Astrometric char (CU3+CU4)
- Spectroscopic char (CU6)
- Astrophysical param (CU8)

Global Variability Studies (GVS)
CU7 / DPCG Variability Analysis:
a systematic and comprehensive approach

Berry Holl diagram (2013):

1. General Variability Detection (GVD)
2. Special Variability Detection (SVD)

- Calibrated photometry (CU5)
- Radial velocities (CU6)

Specific Object Studies (SOS)

Variables catalogue (CU7)

Global Variability Studies (GVS)

Astrometric char (CU3+CU4)
Spectroscopic char (CU6)
Astrophysical param (CU8)

Unexpected Features Analyses

Supplementary Observations
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):

- Calibrated photometry (CU5)
- Radial velocities (CU6)

1. General Variability Detection (GVD)
2. Special Variability Detection (SVD)
3. Specific Object Studies (SOS)

Astrometric char (CU3+CU4)
Spectroscopic char (CU6)
Astrophysical param (CU8)

Variables catalogue (CU7)

Global Variability Studies (GVS)

Unexpected Features Analyses

Supplementary Observations
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):

1. General Variability Detection (GVD)
2. Special Variability Detection (SVD)
3. Specific Object Studies (SOS)
4. Variables catalogue (CU7)

Astrometric char (CU3+CU4)
Spectroscopic char (CU6)
Astrophysical param (CU8)

Calibrated photometry (CU5)
Radial velocities (CU6)

Global Variability Studies (GVS)

Unexpected Features Analyses
Supplementary Observations
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):

Calibrated photometry (CU5)
Radial velocities (CU6)

General Variability Detection (GVD)
Special Variability Detection (SVD)

Characterization

Classification

Specific Object Studies (SOS)

Variables catalogue (CU7)

Global Variability Studies (GVS)

Unexpected Features Analyses

Supplementary Observations
CU7 / DPCG Variability Analysis: a systematic and comprehensive approach

Berry Holl diagram (2013):

1. General Variability Detection (GVD)
2. Special Variability Detection (SVD)
3. Characterization
4. Classification
5. Specific Object Studies (SOS)
6. Variables catalogue (CU7)
7. Global Variability Studies (GVS)

Astrometric char (CU3+CU4)
Spectroscopic char (CU6)
Astrophysical param (CU8)
Calibrated photometry (CU5)
Radial velocities (CU6)

Unsupervised observations (black)
Supervised observations (white)

task 0: re-order the data
The variability analysis is also a validation of calibrations.
Detailed Berry Holl’s diagram:

- **Calibrated photometry (CU5) [and CU3, CU6, CU8]**
 - **Statistical parameters**
 - **General Variability Detection (GVD)**
 - **Filter (p-value) threshold**
 - **Special Variability Detection (SVD)**
 - **Filter**
 - **Short-time**
 - **Solar-like**
 - **Planets**
 - **Characterization**
 - **Extractor**
 - **Filter**
 - **Transient**
 - **μ-lens**
 - **EB**
 - **(Additional) attribute calculation**
 - **(Un/semi-) supervised classification**
 - **Specific Object Studies (SOS)**
 - **Filter**
 - **μ-lens**
 - **Be**
 - **CV**
 - **EB**
 - **Cep/RRL**
 - **PMS**
 - **LPV**
 - **Flaring**
 - **RotationMod**
 - **AGN**
 - **Rapid-phases**
 - **Short-time**
 - **Planets**
 - **Variables MDB catalogue (CU7)**
 - **Global Variability Studies (GVS)**
Detailed Berry Holl’s diagram:

Calibrated photometry (CU5) [and CU3, CU6, CU8] → Statistical parameters

- General Variability Detection (GVD)
 - filter (p-value) threshold

- Special Variability Detection (SVD)
 - filter short-time
 - filter solar-like
 - filter planets

Characterization

- Specific Object Studies (SOS)
 - filter μ-lens
 - filter Be
 - filter CV
 - filter EB
 - filter Cep/RRL
 - filter PMS
 - filter LPV
 - filter Flaring
 - filter RotationMod
 - filter short-time
 - filter planets

- (additional) attribute calculation
- (un/semi-) supervised classification

Variables MDB catalogue (CU7) → Global Variability Studies (GVS)
Detailed Berry Holl’s diagram:

Calibrated photometry (CU5) [and CU3, CU6, CU8]

Statistical parameters

General Variability Detection (GVD)

- Filter (p-value) threshold

Special Variability Detection (SVD)

- Short-time
- Solar-like
- Planets

Characterization

Extractor

- Transient
- μ-lens
- EB

(additional) attribute calculation

- (un/semi-) supervised classification

Specific Object Studies (SOS)

- μ-lens
- Be
- CV
- EB
- Cep/RRL
- PMS
- LPV
- Flaring
- RotationMod

Variables MDB catalogue (CU7)

Global Variability Studies (GVS)
Yes we are ready!
Special Variability Detection: Short time scales, ad-hoc simulation

Simulated data of Gaia Per-CCD photometry

~30 are known, 200 AM CVn stars may be detected by Gaia (Nelemans 2013)
Special Variability Detection:
Short time scales, ad-hoc simulation

Simulated data of Gaia Per-CCD photometry

Gaia is probing the sky at the few seconds level!

~30 are known, 200 AM CVn stars may be detected by Gaia (Nelemans 2013)
Special Variability Detection: Exo-planetary transits ad-hoc simulation (by D.W. Evans)

Brandon Tingley/Shay Zucker

![Graph showing Folded Raw Time Series with G Magnitude on the y-axis and Phase on the x-axis. The graph includes observations and a mean magnitude line.]

Courtesy of L. Guy
Special Variability Detection: Exo-planetary transits ad-hoc simulation (by D.W. Evans)

Brandon Tingley/Shay Zucker

Estimations 100s-1000s detected exoplanet transits (Dzigan & Zucker 2012)

Courtesy of L.Guy
Classification:
Transient extractor: test on EROS data

Mowlavi 2014
Classification of variables: example on GOG simulations

Two fundamental quantities

Completeness

<table>
<thead>
<tr>
<th></th>
<th>ACV</th>
<th>BE</th>
<th>CEP</th>
<th>CLASSICALNOVAE</th>
<th>CONSTANT</th>
<th>DSCT</th>
<th>DWARFNOVAE</th>
<th>EB</th>
<th>EW</th>
<th>FLARE</th>
<th>GDOR</th>
<th>M</th>
<th>MICROLENSING</th>
<th>PLANET_TRANSIT</th>
<th>ROAP</th>
<th>RRAB</th>
<th>RRC</th>
<th>SR</th>
<th>ZZCETI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination</td>
<td>19</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>67</td>
<td>17</td>
<td>27</td>
<td>9</td>
<td>29</td>
<td>25</td>
<td>66</td>
<td>58</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>100</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Contamination

- courtesy of B.Holl and L.Rimoldini
SOS: microlensing: test on OGLE

Source 101827 (f0=1.00)
f1=12.85, u0=3.06, t0=22.02, tmax=1455.78, chi2=5.24e-01

- Measured fluxes
- Paczynski curve
- Residual fluxes
Cepheids: Test on OGLE-III (mostly)

DCEP mode identification from Fourier parameters

Clementini, CU7-19 meeting, 2014
Variable stars in Colour-Magnitude Diagram

LMC OGLE data

Variable stars
Eclipsing
Be
Cepheids: [Fund] [1st Ov] [2nd Ov]
RRLyr: [rrab] [rrc] [rrd] [rrf]
Ellipsoidal
Lpv (Long Period Variables)

Spano et al 2009
Variable stars in Colour-Magnitude Diagram

LMC OGLE data

Variable stars
- Eclipsing
- Be
- Cepheids: [Fund][1st Ov][2nd Ov]
- RRLyr: [rrab][rrc][rrd][rrre]
- Ellipsoidal
- LpV (Long Period Variables)

Spano et al. 2009
Variable stars in Colour-Magnitude Diagram

Gaia:

1) Full description of HR diagram (parallax)

2) better precision (detection of many additional types)

3) simultaneous data in G, BP, RP (motion!)

4) Radial Velocities
Release scenario

<table>
<thead>
<tr>
<th>Year</th>
<th>Release 1</th>
<th>Release 2</th>
<th>Release 3</th>
<th>Release 4</th>
<th>Final release</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>α and δ, mean G-magnitude</td>
<td>5-parameter astrometric solutions for single star (parallax)</td>
<td>Mean V_{rad}</td>
<td>Variable stars classification</td>
<td>everything !</td>
</tr>
<tr>
<td></td>
<td>Commissioning data</td>
<td>Integrated BP/RP + Astrophysical parameters</td>
<td>5-par astrometry</td>
<td>non-single star catalogue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100K proper motion stars (Hipparcos+Gaia)</td>
<td>Mean V_{rad} (for non variable)</td>
<td>Object classifications and Astrophysical Parameters</td>
<td>solar system objects</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Orbital solution of binaries</td>
<td>mean RVS spectra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>nominal mission end</td>
<td>extended mission end?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Science operations start: 2014

Final release: everything!

Courtesy of B.Holl
Release scenario

Release 1:
- α and δ, mean G-magnitude
- Commissioning data
- 100K proper motion stars (Hipparcos+Gaia)

Release 2:
- 5-parameter astrometric solutions for single star (parallax)
- Integrated BP/RP + Astrophysical parameters
- Mean V_{rad} (for non variable)

Release 3:
- Mean V_{rad}
- 5-par astrometry
- Object classifications and Astrophysical Parameters
- Orbital solution of binaries
- mean RVS spectra

Release 4:
- Variable stars classification
- non-single star catalogue
- solar system objects

Final release:
- everything!

Groups of variability types should be made public in releases 1?, 2, 3

Courtesy of B.Holl
Conclusions

Gaia will reveal the universe in an unprecedented way

“Gaia will be the finest catalog of variable stars ever made” D.Hogg
Conclusions

Gaia will reveal the universe in an unprecedented way

“Gaia will be the finest catalog of variable stars ever made” D.Hogg

- CU7 will provide fundamental properties of the objects and of their variability
Conclusions

Gaia will reveal the universe in an unprecedented way

“Gaia will be the finest catalog of variable stars ever made” D.Hogg

- CU7 will provide fundamental properties of the objects and of their variability
- The large numbers of sources observed by Gaia will allow
 - search for very rare objects
 - describe properties of group of variable stars
Conclusions

Gaia will reveal the universe in an unprecedented way

"Gaia will be the finest catalog of variable stars ever made" D.Hogg

- CU7 will provide fundamental properties of the objects and of their variability
- The large numbers of sources observed by Gaia will allow
 - search for very rare objects
 - describe properties of group of variable stars
- The variability analysis is triggering “new” method
Conclusions

Gaia will reveal the universe in an unprecedented way

“Gaia will be the finest catalog of variable stars ever made” D.Hogg

- CU7 will provide fundamental properties of the objects and of their variability
- The large numbers of sources observed by Gaia will allow
 - search for very rare objects
 - describe properties of group of variable stars
- The variability analysis is triggering “new” method
- Variability catalogue results will also be most interesting when used with other data sets
 - Complement other projects (LSST, OGLE, CoRoT, Kepler, TESS, PLATO, CHEOPS, …)
 - Follow-up of Gaia data with ground-based facilities (also with “small telescopes”)
Thank you for your attention!
Thank you for your attention!