

The Gaia Basic angle: measurement and variations

A. Mora^{1,2}, U. Bastian³, M. Biermann³, F. Chassat⁴, L. Lindegren⁵, I. Serraller^{1,6}, E. Serpell⁷, W. van Reewen^{1,2}

¹ESA-ESAC, ²Aurora Technology, ³Astronomisches Rechen-Institut, ⁴Airbus Defence and Space, ⁵Lund Observatory, ⁶GMV, ⁷ESA-ESOC

The Milky Way Unravelled by Gaia Barcelona, 2014/12/02

1. Preliminary results. Gaia still to be fully understood!

2.Basic angle: importance and instrument design

3.BAM data analysis

4. The real basic angle: in-orbit behaviour

5.Conclusions

2. Importance and instrument design

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 3

2.The Gaia basic angle

2. Basic angle variation: effects

- Gaia aims at global astrometry (reference frame, stellar motions and parallaxes) at µas accuracy
- > The basic angle needs to be stable (or known) to corresponding precision
- Gaia is largely self-calibrating (calibration parameters estimated from observations)
- Low frequency variations (f < 1 / 2P_{rot}): eliminated by self-calibration
- > High frequency random variations
 - Averaged during all transits, not so harmful
- Systematic variations synchronized with spacecraft spin
 - Only partially possible to eliminate by self-calibration
 - Residual variations could create systematic errors in astrometric results
 - Thus **high-frequency** variations need to be monitored by **metrology**

2. Basic angle measurement: BAM

One artificial fixed star per telescope needed

- Collimated laser beams directed to the primary mirrors
- Gaia telescopes generate the image

Relative AL centroid displacement basic angle variation

Single CCD AL centroid location precision

- AF: $\Delta y_{AL} \sim 40 \ \mu as$ single transit bright star limit
- BAM: $\Delta y_{AL} < 0.5 \mu as$ in 10 min (differential measurement)

- ~20s/frame $\rightarrow \Delta y_{AL,1frame} < 2.7 \ \mu as. ~15x$ better than bright stars!!

Many photons and sharp LSF needed

• Artificial stars are interferometric patterns

2. BAM working principle

0.5 µas = **2.4** prad = **3.6** pm = **0.66** µfringe

On ground state of the art: 1 milli-fringe

3. Data analysis

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 8

3. BAM data analsysis: strategies

Cross-correlation

- Pros: very fast, good precision, any template is OK
- Cons: very high systematics, not customizable
- Fourier transform
 - Pros: fast, good precision
 - Cons: high systematics, not customizable
- Direct fit method
 - Pros: customizable
 → low systematics for good model
 - Cons: slow, harder development

3. BAM analysis: direct fit model

Analytic model

- Inspired by Airbus Defence and Space early studies
- Reasonably fast computation
- No optical aberrations considered
- Derivatives → parameter fit
- > The image is a function of a few (12) variables
 - Gaussian peak, waist and x-y location
 - White light fringe: x-AL location and angle
 - Fringe period
 - Sky brightness

Noise: Poisson shot noise and CCD read-out noise

3. BAM analysis: direct fit model

3. BAM analysis: direct fit model

Background (no shutter during CCD read-out)

A. Mora, AMF-005

4. The real BAM: in-orbit behaviour

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 14

4. BAM (non-) Gaussianity

SAOImage ds9											
File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help											
File	e referenceAstro1NominalFitIn01.fits										
Object										x 📗	
Value		10353.7								<u> </u>	
WCS	v	20 500	V 410 9	:00							
Image	x	39.500	V 410.5	500							
Frame 1	x	1.000	90.0	± 00							
file		edit	view	frame	bin	zoom	scale	color	region	WCS	help
about	t		pen	save	save im	age	header	page set	up	print	exit
] 1	000000000
1.17	7e+(04 2.26e	+04 3.37	'e+04 4.47e+	04 5.57e+04	6.67e+04	7.77e+04	8.87e+04 9.	97e+04		

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 15

4. BAM (non-) Gaussianity

> Additional overimposed low frequency interference pattern

- Hypothesys: Accumulated aberrations in optical path
- CCD fringing not an issue: ~2.9% prediction vs 20+% observed

4. BAM phase and period variations

> Fringe phase periodic shift: Sun synchronous, ~ 1 mas (nm stability!)

- Fringe phase discontinuities: several per day
- Fringe phase mid-long term evolution (real?)
- Fringe period variability

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 17

European Space Agency

esa

4. BAM phase periodic component

Periodic signal preliminar Fourier analysis

- 6-12 harmonics of rotation period: mas \rightarrow µas
- Slow temporal evolution + plenty of data → can be characterised

Can be a model input for the AGIS solution

L. Lindegren, LL-105

4. BAM phase: Fourier fit residual

- > 24 hr component: related to downlink (transponder + PDHU)
- Peaks for very high density sky (galactic plane, centre)
- Additional modeling required. House keeping temperatures and counters will help BAM signal after subtraction of fixed harmonics + trend

4. BAM vs stars: periodic component @esa

- > Two same ring ODAS solutions with different epochs (Sun location)
- > In-orbit data explained. Sun effect as expected, considering uncertainties
- More results expected after first AGIS solution

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 20

U. Bastian et al., FLS-036European Space Agency

4. BAM phase discontinuities

A. Mora, commissioning

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 21

4. BAM vs stars: discontinuities

> One Day Astrometric Solution (ODAS): daily average (no periodicity)

4. BAM period variability

- Wavelength depends on laser temperature and current
- Focal plane array power consumption depends on the sky!
 - RVS LR-HR mode
 - VPU, PDHU power
- > ±0.005 K → stability ~1/250,000
- Mitigation schemes under study

European Space Agency

4. BAM period uniformity

- Wavelet analysis: constant fringe period does not exist
- Better models required

4. BAM vs spin restart

> Spin restart after safe mode: variations appear very soon: < 1 min

4. BAM vs spin restart

> BAM signal: instantaneous periodic + transient -> Expected if thermoelastic

4. BAM + spacecraft maneouvres

- Basic angle variations vs inertial forces
- Station keeping maneouvres
 - Chemical propulsion thrusters ~10 N
- Transient effect on the BAM
 - Good compatibility with Gaia optoelastic model

Courtesy: Airbus D&S

4. BAM vs Sun-Gaia distance

> Basic angle driven by the Sun? \rightarrow 1/r² \rightarrow Approx. followed by first hamonics

5. Conclusions

- 1. Basic Angle Monitoring device (BAM) is functional
 - 1. It measures real basic angle variations
- 2. Most precise interferometer ever flown
 - 1. Micro-fringe measurement precision, pm shifts!
- 3.~1 year of data analysed. Reliable pipeline in place
- 4. Variations larger than expected: nm vs pm stability
 - 1. Driven by the Sun \rightarrow thermoelastic?
- 5. Further modeling being improved to achive µas accuracy

Additional material

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 31

2. The BAM is a retroreflector

BAM design rules

- R1: Insensitive to translation of bar #1
 - The beams feeding bar #1 are parallel
- R2: Insensitive to to rotation of bar #1 along spin axis
 - Same input/output beam separation. Restrictions on orientation
- > R3: Insensitive to different temperatures between bars
 - Adjust OPD to make input/output planes to bar #1 wavefronts
- > R4: Insensitive to laser beam point source motions
 - Same light source for all beams
- > R5: OPD \sim 0: white light fringe must be in the pattern
 - Adjust OPD of whole system.

2. Design rules

2. Design rules

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 34

3. BAM analysis: mathematics

BAM image = interference pattern + background

Interference pattern

 $N(i,j) = \frac{\Delta t_{\rm BAM} \rm QE}{h\nu} \int_{i\Delta x_{\rm AL}}^{(i+1)\Delta x_{\rm AL}} dx \int_{j\Delta y_{\rm AC}}^{(j+1)\Delta y_{\rm AC}} dy \left(I_{G1} + I_{G2} + 2\sqrt{I_{G1}I_{G2}}\cos\delta \right)$

$$I_G(x,y) = I_0 \exp\left(-2\frac{(x-x_c)^2 + (y-y_c)^2}{w^2}\right) \qquad \qquad \delta(x,y) = 2\pi\beta d = \frac{2\pi B_I d}{\lambda f}$$

$$\textbf{B}(i,j) = \text{Sky} + \frac{\Delta t_{\text{TDI}} \Delta y_{\text{AC}} \text{QE}}{h\nu} \sqrt{\frac{\pi}{2}} \\ \times [w_1 I_{G1}(x_{c1}, (j+0.5)\Delta y_{\text{AC}}) + w_2 I_{G2}(x_{c2}, (j+0.5)\Delta y_{\text{AC}}) \\ = \text{Sky} + B_1(i,j) + B_2(i,j)$$

3. BAM analysis: MIT-IDT pipeline

>MIT: MOC Interface Task (see Siddiqui et al. [9149-91])

- TM stream → BAM SP4 packets → DB
- Sequential processing (data assembly and integrity)
- >IDT: initial data treatment
 - SP4 TM packet → BamObservation → BamElementary → DB
 - Number crunching → Parallel operations
- > Fully automated Java pipelines. They are always active
 - One day of data is processed in a few hours
 - Manual operations: software and calibration (BamStatus) updates
- ESA-ESAC DPCE cluster. IDT typically runs on 8 nodes
 - 1 node = 2 CPU Intel X5550, 8 cores 2.66 GHz. 32 GB RAM

4. BAM period variability

- Strongly correlated with BAM laser temperatures.
- > Moderately correlated with main bus voltage (3 hr average) and RVS PEMs temperature
- House keeping data affected by quantisation

4. BAM + spacecraft maneouvres

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 38

Courtesy: Airbus D&S

4. BAM + spacecraft maneouvres

A. Mora et al. | The Gaia Basic angle | The Milky Way Unravelled by Gaia | 2014-12-02 | Pag. 39

Courtesy: Airbus D&S