GENIUS Web2.0 Demonstrator

The

 is now available. This page gives some context and notes for users test driving this service. GENIUS Web2.0 prototype demonstrator
CONTEXT

The Web2.0 concept is one of enhanced end-user experience via useful functionality embedded within the browser session. In this case, we have

· auto-completion when typing freeform ADQL, according to data resources available when loaded as part of the session

· embedded interactive plotting/browsing and filtering through query results

· transparent cross-querying of catalogue resources via underlying Distributed Query Processing (DQP) infrastructure

· VOTable/Fits/CSV/HTML download options
BRIEF INSTRUCTIONS

From the home page linked above, click on "Freeform SQL" in the left-hand navigation bar. This will take you to a window into which you can type ADQL queries in plain text. Be aware that your session has a "context" in that data resources can be selected for auto-completion and archive metadata browsing - by default, the demonstrator loads the ESAC Gaia archive database via the GACS TAP service, and auto-completion options displayed as you type will be restricted to that metadata unless you load further resources into the session (see later). To see the catalogue metadata currently available within your session, simply click on "Show loaded Metadata" and expand the treeview as required.

For a test query, type in (or cut-and-paste for speed) the following query:

select mag_g, mu_alpha, mu_delta from GACS.igsl_source where alpha between 55.75 and 56.75 and delta between 23.5 and 24.5

As you type, auto-completion options can be displayed in a pop-up by pressing ctrl-space.

Once the results set from the query above are presented in summary form, you can invoke interactive plotting by pressing the "Plot Results" icon. In this case, selecting mu_alpha and mu_delta in the attribute selection box (again, auto-completion is available for convenience) and selecting "Plot type: Scatter" produces a browsable plot - zoom in to see the group of cluster proper motion members offset to (+20,-40) from the general field population near (0,0) - these are Pleiades proper motion members. N.B. when plotting larger row sets, it is advisable to use "Plot type: Mixed Scatter/Density" or even "Select Mode" -> static for reasonable response times in the present implementation.

For cross-querying, note that crossmatch neighbour tables are present in the ESO VST southern hemisphere optical survey ATLASDR1 DB only, and that these do not include "best" match tables or "mates" fields (as specified in the Gaia DPAC CU9 schema) but otherwise are similar with master and slave unique IDs pointing between any two source catalogues within a predefined neighbourhood radius of 10 arcsec. For example, load in the table metadata for ATLASDR1 and TWOMASS by clicking on "Load database(s)" -> "More" and click on the "+" beside each followed by "OK". Clicking on "Show loaded Metadata" will now display ATLASDR1 and TWOMASS in addition to GACS (click on "Hide metadata" to collapse the view when not required) and expand these up to and including the specific table resource required for querying to load the metadata for auto-complete functionality.

An example crossmatch query is given here that checks the g-band photometric consistency between the VST ATLAS DR1 survey photometry and that in SDSS DR9:

select gAperMag3, psfMag_g

from atlasSource as a, photoprimary as b, atlasSourceXDR9PhotoObj as x

where gAperMag3 > -99 and psfMag_g < 99 and distanceMins < 1.0/60.0

and a.sourceID = x.masterObjID and b.objid = x.slaveObjID

In this case the crossmatch is limited at query time to 1 arcsec via the predicate on "distanceMins". Other predicates remove default rows, and provide the relational join between the two source catalogue tables and the crossmatch neighbour table.

Other data holdings presented via the demonstrator include SDSS DR9 ("BESTDR9"), Vista Hemisphere Survey DR1 ("VHSDR1") and the WISE source catalogue (not surprisingly, "WISE"), and all have crossmatch tables present in ATLASDR1 following the naming convention

atlasSourceX...

viz.

atlasSourceXDR9PhotoObj

atlasSourceXvhsDr1Source

atlasSourceXwise_allskysc

respectively etc. These are hosted locally on the SQL database back-end DBs serving the demonstrator, so in general crossmatches between them are fast, being executed entirely within the DB server itself via a relation join operation. The exception is for 2MASS, where we have configured DQP to query this as if it were hosted remotely on the wide area network with provision through TAP. Hence crossmatch queries involving 2MASS will be considerably less speedy than those on catalogue pairs not including 2MASS, and are more representative of the current performance of DQP in general.
KNOWN ISSUES

Please be aware of the following issues and limitations when test driving the service:

· Cross-querying is not yet available between the GACS tables and other catalogues (cross-neighbour tables are not yet available);

· Array fields (stored as VARBINARY types in backend databases) are not yet supported in the interface layers;

· Full Distributed Query Processing is not yet optimised so some cross-querying will be sluggish and/or time out;

· Auto-completion is limited to those resources loaded AND expanded in the "Show loaded Metadata" view, i.e. to load the metadata for a given table to make them available for the auto-complete functionality, expand the treeview up to, and including, that table

· Once loaded, table metadata are presented in auto-complete pop-ups even if the DB resource is subsequently deleted in the "Load database(s)" view

All of these issues are presently being worked on and will be improved in future versions of the prototype.

IMPLEMENTATION DETAILS

Technologies used
· Python >= 2.7.6

· Webpy python framework. Version >= 0.35 (http://webpy.org)
· JQuery (1.7.2)

Notes on webpy
Webpy is the main (Python-based) framework used in this demonstrator application. This runs on an Apache server, enabled using the the mod_wsgi module and serves any requests to the genius.roe.ac.uk URL. This serves the basic pages to users (home, contact us, freeform page & known issues), but also takes request to handle some data processing for navigating through the results of a query (i.e navigating through the pagination, filtering the results etc) & all the required processing actions for the plotting page.

When running a query the request is handled by a Java based service (Firethorn – https://gaia.ub.edu/Twiki/pub/GENIUS/DeliverablesGenius/GAIA-C9-TN-IFA-DM-001.pdf

 HYPERLINK ""
), not covered in this page, which essentially serves as the middleware between the web application and the underlying data sources. The Firethorn service is responsible for handling the processing of the query (including distributed joins with separate IVOA resources), as well as getting and storing metadata for catalogues and user sessions. This interaction is achieved using RESTful requests to the Java based services, which return JSON formatted data.

Technical Requirements
· Apache2 web server (https://www.apache.org/)
· mod_wsgi module for Apache (https://code.google.com/p/modwsgi/wiki/QuickInstallationGuide)

· Python >= 2.7.6

· Python libraries: python-numpy python-scipy python-matplotlib

or

Virtual Machine which can run docker (Dockerfiles available to automate installation of aforementioned)
Browsers not supported

<= Internet Explorer 7
Freeform SQL Functionality Implementation notes
Interactive Result Tables
Written using a jQuery plugin called Datatables (https://www.datatables.net/). The results of the query are stored locally in a database, and served to the library with an asynchronous call to a REST service which returns the data in a format readable by the library. Example: [["ra","dec"],[{"ra" : 39.62,"dec" : -25.26}]]. Table viewing can also be instantiated with the full data set in stored in the client-side object Datatables object, but this option does not scale well with large data. Thus the preferred method would be serving the data via a REST based service.
Download formats
Alongside the interactive datatable we provide a number of formats available for the user to store their data as, including HTML, CSV, FITS, VOTABLE as well as copying to clipboard. These buttons create requests to webpy controllers which generate the appropriate format and serve it to the user. The processing required to generate the results in each format is done using Python.
Auto-complete
Uses the JQuery plugin CodeMirror (https://codemirror.net/). Instantiated using a fixed list of known SQL keywords, with additional keywords appended to the code mirror object every time a new list of metadata is introduced (i.e. Fetching the tables of catalogue using the “Show loaded metadata option”)
Table plotter Implementation notes

Interactive plotting
Written in Javascript using the Highcharts jQuery library (www.highcharts.com) , extended to fit our needs for more scalability. Specifically when selecting the Mixed density/scatter plot, the results are binned where the number of points in a certain area exceeds a certain minimum value, and displayed as a box, the colour of which is based on the density of that area. Also, our Javascript implementation enables the interactivity of the plotted svg “circle” & “rect” elements, where clicking or selecting points or boxes will highlight rows in the Datatables-based data results. (Note: Also works the other way around).

Static plotting
The static option for plotting (Switch using “Select Mode”), including the Density, Scatter & Histogram options makes a call to a webpy Python Controller which generates & returns a PNG image. Note: Static plotting can be useful if number of rows to be plotted exceeds the capabilities of what the user's browser can handle.

Samp Connection feature
Written in Javascript using the samp.js library by Mark Taylor (http://astrojs.github.io/sampjs/). Used by both the query & plotting tools. JS code available which allows:

· Connecting to Samp

· Broadcasting table

· Clicking rows to highlight equivalent rows in other hubs (i.e. Topcat)

Are these features portable & how?
Some of the features described above are Javascript (JQuery) based, such as the autocomplete, samp and thus can be easily provided as .js files and included into another application. Let's say for example we want to port the autocomplete implementation to another application. A set of all the required .js files would be provided and would have to be included in the HTML document (or script that generates it). Object would be instantiated in a Javascipt class which would point to the textfield or textarea where autocomplete is needed, along with an array of keywords.

On the other hand the plotting & table viewing tools, would require some communication in terms of what would be required, as in their current form they are tied with our webpy Python implementation in order to improve the scalability, however this can be re-written in any other preferred language or framework as the interface calls remain the same.

